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1. Introduction

1.1 Background and motivation

The recent data from the WMAP satellite [1] have allowed the matter density of the

Universe to be quantified with greater precision than ever before, whilst also strongly

disfavouring warm dark matter. With the relative1 matter density Ωm constrained by

the measurement Ωmh2 = 0.135+0.008
−0.009 and the relative baryon density Ωb constrained by

Ωbh
2 = 0.0224 ± 0.0009, one can infer the following 2-σ contraint on the relative density

of cold dark matter: ΩCDMh2 = 0.1126+0.0161
−0.0181 , where the reduced Hubble constant h is

measured to be 0.73 ± 0.03.

In R-parity conserving supersymmetric (SUSY) models, the lightest supersymmetric

particle (LSP) is stable and is therefore an ideal candidate for non-baryonic cold dark

matter. Past studies in the context of the minimal supergravity (mSUGRA) model have

identified regions of the five dimensional mSUGRA parameter space in which the relic

density of the LSP (usually the lightest neutralino χ̃0
1) is consistent with dark matter

constraints [2], and recent studies carried out post-WMAP have narrowed these regions

further [3]. There has been much recent interest in examining the phenomenology of SUSY

models that are consistent with the WMAP results in preparation for the arrival of the

LHC.

The aim of this paper is to use the study of one such model to demonstrate a new

approach to mass measurements at the LHC. In present analyses, inclusive signatures are

rarely used to constrain SUSY models, despite the fact that they are straightforward to

define and measure at the LHC. This is almost certainly due to the difficulty associated

with calculating the expected values of these signatures at many points in parameter space,

a process that requires a large amount of computing power. Nevertheless, we demonstrate

that inclusive signatures contain a great deal of information, using as an example the

cross-section of events with missing pT greater than 500 GeV.

The standard technique for analysis of mSUGRA models is to look for kinematic

endpoints, and use these to measure the masses of particles involved in cascade decays.

These can then be used to obtain the values of the GUT scale mSUGRA parameters. The

1That is the density divided by the universe’s critical density
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problem, however, is that such an analysis is often loaded with assumptions. Although

endpoint measurements are in principle model independent, it is usually assumed that

one has correctly identified the particles in the decay chain, giving unreasonably good

precision on the measured masses. Furthermore, it is inevitable that models more general

than mSUGRA will be able to reproduce the endpoints seen in cascade decays, and hence

it is important to develop techniques that allow one to investigate other possibilities.

Our approach is to combine endpoint measurements with inclusive signatures through

the use of Markov chain sampling techniques, a method that can in principle be applied

to any parameter space, with any information we happen to have obtained experimentally.

The advantage of Markov chain techniques is their efficiency; a crude scan of 100 points per

axis in a 3 dimensional parameter space would require one million points, whereas obtaining

the same useful information with our choice of sampling algorithm required only 15,000

points. Even so, in order to evaluate inclusive signatures at many points in the parameter

space within a sensible period of time, it was necessary to develop an MPI adaptation

of the HERWIG 6.5 Monte Carlo event generator [4 – 6] for use on a supercomputer with

parallel processing.

Throughout this paper, we use a particular mSUGRA model as a description of nature,

but it is important to realise that we could in principle have chosen any SUSY model that

fits with current observations; the techniques described here rely only on the fact that

we have observed endpoints in invariant mass distributions and are able to measure other

well-defined observables. Indeed, given enough inclusive observables, one would not even

need to have observed endpoints in order to obtain precise results.

Section 2 demonstrates the successful application of kinematic edge analysis to the

chosen mSUGRA point before section 3 reviews Metropolis sampling and applies the tech-

nique to the reconstruction of the masses involved in a squark decay chain. This differs

from current techniques only in the choice of the method used to fit the masses, as it is

assumed in sections 2 and 3 that we have correctly identified the particles in the decay

chain. In section 4, we introduce a method by which we can combine the endpoint data

with a cross-section measurement in order to tighten the precision on the masses, using

the sampling techniques reviewed in section 3. For the sake of clarity, this is introduced

in the familiar context of an mSUGRA analysis where it is assumed that the particles in

the decay chain have been identified correctly, and we merely wish to fit the endpoints and

obtain masses and mSUGRA parameters.

Finally, in section 5 we admit that we do not know which particles are in the decay

chain, and we also start to relax the conditions of the mSUGRA model by having non-

universal gaugino masses at the GUT scale. These are both powerful extensions of the

current analysis, and as far as the authors are aware have only rarely been looked at before

(e.g. [7, 8] for consideration of particle ambiguity). We also investigate the effect of a jet

energy scale error, in order to demonstrate how one might include systematic experimental

effects in our technique.

The method developed in sections 4 and 5 can easily be generalised to include other

inclusive signatures, and to explore larger parameter spaces, and it can be used in future

as a basis for obtaining precise measurements in general SUSY models.
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Particle Mass (GeV)

χ̃0

1 137

χ̃0

2 264

ẽL 255

ẽR 154

g̃ 832

ũL 760

ũR 735

d̃L 764

d̃R 733

b̃1 698

b̃2 723

t̃1 574

t̃2 749

τ̃1 147

τ̃2 257

h 116

Process Branching Ratio

χ̃0
2 → ẽRe 2%

χ̃0

2 → ẽLe 29%

χ̃0

2 → τ̃1τ 18%

χ̃0

2 → τ̃2τ 2%

χ̃0

2 → χ̃0

1h 48%

Process Cross-Section

SUSY (Total, HERWIG) 9.3 pb

SUSY (After ATLFAST

missing pT > 500 GeV cut)
2.0 pb

Table 1: The most important sparticle

masses at the coannihilation point.

Table 2: Branching ratios and cross-sections

for important processes at the coannihilation

point.

1.2 Definition of model

This paper describes an analysis carried out on a point consistent with the WMAP data,

described by the following set of mSUGRA parameters:

m0 = 70GeV, m1/2 = 350GeV

tan β = 10, A0 = 0, µ > 0

The values of the universal scalar and gaugino masses at the GUT-scale (respectively m0

and m1/2) are chosen such that the point lies in the coannihilation region in which the

LSP’s annihilate with sleptons, thus reducing the LSP relic density to a value within the

range consistent with WMAP. Henceforth we will refer to this model as the ‘coannihilation

point’.

The masses of the most relevant particles are contained in table 1, whilst branching

ratios for some of the most significant decay processes are given in table 2, generated using

ISAJET 7.69. Cross-sections in table 2 were calculated with HERWIG 6.5 and with fortran

ATLFAST-2.16. Although similar to the point 5 analysed in the ATLAS Physics TDR [9],

this particular model differs by having small mass differences between the χ̃0
1 and the ẽR

and between the χ̃0
2 and the ẽL, leading to the production of soft leptons that may be

missed in the detector thereby reducing the efficiency with which we are able to select

relevant SUSY decays.

2. Kinematic edge analysis

We begin by demonstrating that standard edge analysis techniques work (within their

limitations) for the chosen coannihiliation point.

– 4 –
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2.1 Search for squark decay

Previous studies (for example [9, 10, 7]) have illustrated the procedure of searching for

kinematic edges in the various invariant mass distributions resulting from a given event.

By isolating exclusive decay processes, one can use these kinematic edges to obtain mea-

surements of the masses of the sparticles that participate in the decay chain. The procedure

is used here in conjunction with the decay:

q̃ → qχ̃0
2 → ql±2 l̃∓L → ql±2 l∓1 χ̃0

1

This is an excellent starting point for analysis due to the clear signature provided by the

two opposite-sign, same-flavour (OSSF) leptons. The left-handed slepton is considered here

rather than the right-handed slepton due to the much greater branching ratio BR(χ̃0
2 →

ẽLe). The following endpoints are expected to be observed in invariant mass spectra

associated with this decay chain (ψ̃ = m2
χ̃0

2

, q̃ = m2
q̃, l̃ = m2

ẽL
, χ̃ = m2

χ̃0
1

):

(m2
ll)

edge =
(ψ̃ − l̃)(l̃ − χ̃)

l̃
(2.1)

(m2
llq)

edge =











max
[

(q̃−ψ̃)(ψ̃−χ̃)

ψ̃
, (q̃−l̃)(l̃−χ̃)

l̃
, (q̃l̃−ψ̃χ̃)(ψ̃−l̃)

ψ̃l̃

]

except when l̃2 < q̃χ̃ < ψ̃2and ψ̃2χ̃ < q̃l̃2

where one must use(mq̃ − mχ̃0
1

)2.

(2.2)

(m2
lq)

edge
max = max

[

(q̃ − ψ̃)(ψ̃ − l̃)

ψ̃
,
(q̃ − ψ̃)(l̃ − χ̃)

l̃

]

(2.3)

(m2
lq)

edge
min = min

[

(q̃ − ψ̃)(ψ̃ − l̃)

ψ̃
,
(q̃ − ψ̃)(l̃ − χ̃)

(2l̃ − χ̃)

]

(2.4)

(m2
llq)

thres =
2l̃(q̃− ψ̃)(ψ̃− χ̃)+ (q̃+ ψ̃)(ψ̃− l̃)(l̃− χ̃)− (q̃ − ψ̃)

√

(ψ̃+ l̃)2(l̃+ χ̃)2− 16ψ̃l̃2χ̃

4l̃ψ̃

(2.5)

where “min” and “max” refer to minimising and maximising with respect to the choice of

lepton. In addition, “thres” refers to the threshold that appears in the mllq distribution

when events are chosen such that medge
ll /

√
2 < mll < medge

ll , corresponding to the angle

between the two lepton momenta exceeding π/2 in the slepton rest frame (see [7]).

2.2 Monte Carlo event simulation

Monte Carlo simulations of SUSY production at the above mass point have been per-

formed using HERWIG 6.5 [4 – 6], with the particles subsequently passed through the fortran

ATLFAST-2.16 detector simulation [11]. A HERWIG input file was generated using ISAJET

v7.69 [12] in conjunction with the Herwig-Isajet interface ISAWIG which converts the

ISAJET output into HERWIG input format. A sample corresponding to 100fb−1 has been

generated (being one year of design luminosity in the high luminosity mode).

– 5 –



J
H
E
P
0
1
(
2
0
0
6
)
0
8
0

2.3 Invariant mass distributions

2.3.1 Cuts

In order to see the above edges clearly, one must apply various cuts to the event data

in order to isolate a clean sample of the squark decay chain. Here, one can select events

with the OSSF lepton signature described above, and one can also exploit the fact that

the required events have a large amount of missing energy (due to the departure from

the detector of two invisible χ̃0
1’s). Furthermore, one expects to obtain hard jets in SUSY

events, resulting from the decay of gluinos and squarks. All plots are obtained through the

use of the following cuts:

• Emiss

T > 300 GeV;

• exactly two opposite-sign leptons with pT > 5 GeV and |η| < 2.5;

• at least two jets with pT > 150 GeV;

Although the cuts chosen are similar to those used for point 5 in the ATLAS Physics TDR,

there are some exceptions. For example, one needs to impose a pT cut on the leptons in

the event due to the fact that ATLFAST is not parametrised properly for low pT leptons,

and yet it is essential to pick up soft leptons due to the small mass differences that crop up

in the decay chain. Hence, a compromise between these two factors must be chosen. Some

plots are the result of additional cuts, and these are given below.

The SM background for dilepton processes is generally negligible once the missing pT

cut has been applied, though the OSSF lepton signature can be produced by SUSY pro-

cesses other than the decay of the χ̃0
2. One would expect these to produce equal amounts

of opposite-sign opposite-flavour (OSOF) leptons and hence one can often subtract the

dilepton background by producing “flavour subtracted plots” in which one plots the com-

bination e+e−+µ+µ−−e+µ−−e−µ+. This is only useful in cases where there are sufficient

statistics, and was not done for every plot below.

2.3.2 mll plot

As seen in figure 1, a sharp edge is produced in the spectrum at ≈ 58 GeV, and this is a

very clear signature. The second edge visible at ≈ 98 GeV results from the right-handed

selectron. In practise, it will be very difficult to assign these two edges correctly, and this

problem is revisited in section 5.

2.3.3 mllq plot

This is produced by selecting events with exactly two leptons, and forming the invariant

mass mllq first with the jet q1 with the largest transverse momentum, and then with the jet

q2 with the second largest transverse momentum. As the hardest jets in events containing

cascade decays of squarks and gluinos usually come from the processes q̃ → χ̃0
2q and

q̃ → χ̃0
1q, the lower of the two invariant masses formed in this way should lie below the llq

edge defined by equation (2.2), and so mllq is defined by mllq = min(mllq1
,mllq2

). Figure 2

shows a clear endpoint in the mllq distribution at ≈ 600 GeV.

– 6 –
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Figure 1: The flavour-subtracted dilepton

invariant mass plotted with the cuts de-

scribed in the text.

Figure 2: The llq invariant mass plot.

2.3.4 mthres
llq plot

The mllq variable plotted in order to measure mthres

llq is defined almost in the same way

as the mllq variable defined in section 2.3.3. The two differences are that this time (1)

mllq = max(mllq1
,mllq2

) (because a threshold2 is expected rather than an endpoint) and

(2) events must satisfy an additional constraint that mll must exceed mmax
ll /

√
2. The

resulting mllq distribution may be seen in figure 3. This plot is not flavour-subtracted.

A threshold is clearly observed a little above 100 GeV, though it is difficult to state its

precise position due to uncertainty in the expected shape of the edge and the manner in

which it is modified by detector effects. This is discussed further below.

2.3.5 mmax
lq and mmin

lq plots

Figure 3: The llq invariant mass thresh-

old plot.

In creating the mmax
lq and mmin

lq plots the following

steps are taken. First, one of the two hardest jets

in the event is selected by the same method used

in section 2.3.3, i.e. by looking for the combina-

tion yielding the lower value of mllq. Having iden-

tified this jet (call it q), the quantities ml1q and

ml2q are formed. The larger of these two combi-

nations mhigh
lq = max (ml1q,ml2q) and the lower

of them mlow
lq = min (ml1q,ml2q) are identified.

The distribution of mhigh
lq is plotted in figure 4

and the endpoint located therein is identified as

being mmax

lq . The distribution of mlow
lq is plotted

in figure 5 and the endpoint located therein is

identified as being mmin
lq .

2The terms “endpoint” and “threshold” are used to refer the the extremal values of a random variable or

observable at respectively high and low mass values. The term “edge” describes the shape of the distribution

of that variable near its endpoint or threshold.

– 7 –



J
H
E
P
0
1
(
2
0
0
6
)
0
8
0

Figure 4: The lq max invariant mass plot. Figure 5: The lq min invariant mass

threshold plot.

Edge Predicted (GeV) Observed (GeV)

ll edge 57.64 57.5±2.5

llq edge 600.1 600±10

llq threshold 134.0 150±30

lq max edge 592.1 590±10

lq min edge 181.7 180±10

Table 3: Predicted and observed edge positions for the mSUGRA mass point described in the text.

Error estimates have been obtained ‘by eye’, and reflect lack of information regarding the precise

shapes of the endpoints.

For the mmax
lq plot (figure 4) events were subject to the additional constraint that one

of the llq invariant masses formed with the two hardest jets must be above the llq endpoint,

and the other must be below.

The mmin
lq plot (figure 5) has one additional cut: the dilepton invariant mass must be

less than the value of mmax
ll observed in figure 1.

Both plots exhibit endpoints, and the edge is particularly abrupt in the mmax
lq his-

togram. Although there are events beyond the endpoint in the mmin
lq plot (due to SUSY

background processes), there is nevertheless a convincing edge at ≈ 180 GeV.

2.4 Comparison of observed and predicted edges

The edges predicted by equations (2.1) to (2.5) are summarised in table 3, where the spread

of the squark masses has been ignored, approximating them at a common value of 750 GeV,

and all other masses are taken from table 1. The observed positions of the endpoints are

also given.

It is common when extracting the observed edges from plots such as those above to

fit a function to the endpoint in order to determine both the precision and the accurate

position. For the purposes of this analysis, the edges, and their estimated errors, have

been determined ‘by eye’ for several reasons. Firstly, not all edges can be fitted with

– 8 –
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functions (in the case of the llq threshold, for example, the correct shape is not known).

Indeed, recent work in [8] highlights the need for caution in applying these functions too

readily without first investigating the theoretical shape of the distribution, as endpoints

can often exhibit tails or ‘feet’ that will be confused with SUSY background and hence may

lead to inaccurate measurements. The shapes of the endpoints for distributions involving

quarks vary significantly over the parameter space, introducing a model dependence into the

precision with which one may realistically measure endpoint positions and hence masses.

Given that the purpose of this note is primarily to use an arbitrary example in order to

demonstrate our use of Markov chain sampling techniques, a full investigation of how to

resolve this model dependence is considered to be beyond the scope of this paper, and we

will use the conservative errors given in table 3. For those interested, the fitting of endpoint

functions has been done in work leading to [13] which contains estimates of the precision

expected if one were to take a more optimistic view.

3. Mass reconstruction

3.1 Background

Having obtained measurements of kinematic edges, the next step is to attempt to recon-

struct the masses involved in the squark cascade decay. This has been done using a Markov

Chain Monte Carlo method, details of which may be found in appendix A. The technique

is an excellent way of efficiently exploring high dimensional parameter spaces, and it is in

section 4 that the full advantages of the technique become apparent.

3.2 Application of Metropolis algorithm

We now apply the sampling techniques described in the appendix to our mass reconstruc-

tion problem. The five endpoints observed in the previous section essentially provide an

(over-constrained) set of simultaneous equations in the four unknowns mq̃, mẽL
, mχ̃0

2
and

mχ̃0
1

, and these can be solved to determine the masses. Given a set of observed edges eobs,

and a set of postulated masses m, the ultimate goal is to evaluate p(m|eobs) and thus to

find the regions of parameter space favoured by the data. The best way of doing this is

to sample masses m from p(m|eobs), subsequently histogramming the samples to reveal

directly the shape of the probability distribution.

Using Bayes’ Theorem we know that

p(m|eobs) ∝ p(eobs|m)p(m). (3.1)

We choose the prior p(m) to be uniform3 over the mass space considered. This choice seems

a good as any other, and has the added benefit that plots of our posterior distribution

3Some points m in mass space do not satisfy the hierarchy mq̃ > mχ̃0

2

> mẽL
> mχ̃0

1

> 0 required by

our decay chain. Under our model, then, these points yield p(eobs|m) = 0 and veto the selection of such

points. While this veto is technically part of the likelihood (given our model) it simplifies later discussion

of the likelihood in more complicated scenarios if we pull the veto out of the likelihood and move it into

the prior p(m). In practise then, our effective prior is uniform over all of the region of mass space in which

the required hierarchy is present, and zero elsewhere. The effect is the same as if we had left the veto in

the likelihood, but the likelihoods will be simpler to describe and define.

– 9 –
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p(m|eobs) are also just plots of the likelihood p(eobs|m), permitting the effects of other

priors p(m) to be easily imagined.

One can sample from p(m|eobs) using the Metropolis Method as follows. First a mass

point m is chosen, and p(m|eobs) is evaluated using equation (3.1). For the edges e1, e2,

e3, e4, and e5, the likelihood p(eobs|m) is given by the product

p(eobs|m) =
5

∏

i=1

p(eobs
i |m), (3.2)

where

p(eobs
i |m) ≈ 1

√

2πσ2
i

exp

(

−(eobs
i − epred

i (m))2

2σ2
i

)

(3.3)

in which σi is the statistical and fit error associated with the edge measurement of edge

ei, and where eobs
i and epred

i (m) are respectively the observed and predicted positions of

the edge. This probability distribution assigns a weight p(m|eobs) to each point m in

mass space, including the errors associated with the endpoint measurements. Note that

p(m|eobs) is the equivalent of the P ∗(x) defined later on in equation (A.2), as it is defined

only up to an unknown normalisation constant.

So, in order to plot the probability distribution, one follows the following steps of the

Metropolis Algorithm:4

1. A new mass point mproposal is suggested on the basis of the current point mcurrent.

The mass-space proposal distribution for the Metropolis Algorithm was chosen to

be a 4-dimensional gaussian whose width in each dimension was 5GeV and whose

centre was the position of the current point mcurrent. The widths were chosen for

the efficiency reasons outlined in section A.4 and will not effect the results once

convergence has occurred.

2. p(mproposal|eobs) is evaluated at the proposed point.

3. A decision is made on whether to jump to the new point, or remain at the cur-

rent point on the basis (see equation (A.3)) of the ratio of p(mproposal|eobs) to

p(mcurrent|eobs).

4. If a decision to not jump is made, then the next point in the chain mnext is again set

equal to mcurrent, otherwise it is set equal to mproposal. When proposals are rejected,

therefore, successive points in the chain are duplicates of each other.

5. All steps are repeated until the sampler has sufficiently explored the interesting re-

gions of parameter space.

It is noted that in the real ATLAS detector, one might have a systematic shift of the

endpoints due to the jet energy scale error, and this is considered in section 5.

4See appendix A.3 for discussion of the motivations behind each of these steps, and for definitions of

“proposal functions” and the decision mechanism.

– 10 –
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3.3 Mass space plots

The Metropolis sampler ensures that points which are more likely are sampled more often.

One can observe the shape of the probability distribution by simply histogramming the

sampled points. This is a 4 dimensional shape in mass space, which can be viewed as a

projection onto each pair of axes. This is done in figure 6, revealing that a lengthy region

of parameter space is compatible with the edge data, and extra information is required to

constrain this further. Note that the endpoint equations discussed previously are sensitive

principally to mass differences, and hence one observes lines in each plane of the mass

space, constraining each mass only in terms of the others. Given that the endpoint data

does not set the overall mass scale, the system is able to wander to high masses without

affecting the position of the endpoints provided that the mass differences remain consistent.

In the next section, we show that one can use other measurements from the LHC that are

sensitive to the mass scale to constrain these regions further.

Finally, it is noted that the lines are broader in the plots featuring squark masses, and

this is due to the fact that the end points were calculated using an average squark mass,

whilst the Monte Carlo events feature a range of squark masses. Hence the resolution is

smeared somewhat relative to the other masses.

4. Cross-section information in mSUGRA space

4.1 Background

In principle, any piece of relevant information may be used to further constrain the regions

consistent with the kinematic edge analysis presented in the previous section. This may be

in the form of further kinematic edges, which will provide a direct constraint on the weak

scale sparticle masses, or in the form of constraints at the SUSY scale. The greater the

number of relevant pieces of information one is able to obtain, the better the precision of

the mass measurements.

One example is given here, and developed further in this section. It should be possible

to measure the cross-section of events with missing pT greater than 500 GeV in the ATLAS

detector to a reasonable precision. As the masses of sparticles increase, the missing pT

will increase, but the total production cross-section will decrease and hence the high mass

solutions encountered in the previous section will lead to missing pT cross-sections that

are lower than the value obtained at the coannihilation point. Thus, the cross-section

information can be added to the definition of the probability function for the Markov

Chain to give a tighter constraint on the SUSY masses.

It should be noted that up to now we have performed a model independent analysis

but, from here on in, some model will have to be assumed in order to draw conclusions from

our measurements. This is because endpoint data can be analysed purely in the mass space

Smass (hereafter “M”) defined by the weak scale masses, but inclusive measurements must

be compared to a given scenario (through the use of a suitable Monte Carlo generator)

before any conclusions can be drawn, and therefore must be analysed in the space of

parameters, Smodel of that model. In section 4, we investigate the constraints imposed
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Figure 6: The region of mass space consistent with the kinematic edge measurements described

in the text, obtained using a Markov chain sampler.

by a cross-section measurement on the parameter space SmSUGRA (hereafter “P”) of a

particular model, mSUGRA, in order to introduce the technique in a familiar context.

The limitations of this approach will become apparent by the end of section 4 and will be

tackled in section 5.
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In view of this change of the constrained-space, (from the space of weak-scale masses

m ∈ M to the space of mSUGRA models p ∈ P ) the description of the Metropolis

algorithm in section 3.2 must, in section 4, be considered re-written in terms of p(p|eobs)

rather than p(m|eobs). This is made more explicit in section 5.1 when a further enlargement

of the constrained-space is made to accommodate uncertainty in the absolute jet energy

scale.

4.2 Cross-section measurement

4.2.1 Implementation

It is assumed in this study that the cross-section of events with missing pT greater than

500 GeV can be measured at ATLAS. One can then pick points in the mSUGRA parameter

space SmSUGRA, work out the mass spectrum, generate Monte Carlo events and work out

the cross-section of events passing this cut. Only certain points in the parameter space are

consistent with this measurement, and these will give a range of masses that are consistent.

Naively, the overlap of this region of the mass space with the region consistent with the

edge data will give the new region of mass space that is compatible with the ATLAS data.

In fact, since the end points are not entirely independent of the cross-section measurement,

one needs to include both sets of information in the final analysis in order to obtain the

required region. The ‘overlap’ picture is approximately true, however, given that the

measurement of the cross-section is not strongly related to the measurements of the edge

positions, and is a useful guide for preliminary investigation before the final analysis is

carried out.

A plot of the missing pT cross-section in the m0, m1/2 plane for fixed tanβ and positive

µ is shown in figure 7. As can be seen, there is a lot of variation over the parameter space

and a measurement of even modest precision will be able to rule out large areas.

The full process of picking mSUGRA points and obtaining the cross-section that pass

the missing pT cut has been accomplished by successively running ISAJET, HERWIG and

ATLFAST, with 1000 events being generated at each point. This is rather time consuming,

however, and a simple scan of the mSUGRA parameter space is unfeasible if any more than

two of the mSUGRA parameters are varied. For this reason, we again use the Metropolis

sampling technique introduced in the previous section and, indeed, it is here that the power

of the method becomes apparent. The algorithm has been used to map the interesting

region of the parameter space with fewer points than would be required in a scan in order

to obtain similar performance.

To demonstrate this, consider the following. There are four and a half parameters in

the mSUGRA parameter space, though we have held A0 constant for simplicity.5 Of the

remaining parameters, one is simply a sign (the sign of µ), and hence one sampling run was

performed with this sign positive, and another with it negative. In any one application of

the software, then, three parameters are varied — m0, m1/2 and tanβ — and even a coarse

scan requiring 100 points along each axis would require one million points for each sign of

5In retrospect there was no compelling reason to hold A0 fixed, and in a later study we expect to look at

the effect of allowing A0 to vary and be measured by the data along with all the other model parameters.
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Figure 7: The cross-section in picobarns for events passing a missing pT cut of 500GeV, for tanβ

= 10 and positive µ, obtained using HERWIG. The value at the coannihilation point is 2.03 pb. The

irregularity in the plot comes from the statistical error from having only simulated 1000 events at

each point, in keeping with the method used in the sampler.

µ. The Metropolis algorithm maps the interesting regions of the space in approximately

15,000 points per sign of µ, a dramatic improvement without which the analysis would

have taken many months, if not years.

Even with this improvement, it was still necessary to reduce the run time of HERWIG

significantly through the use of a parallel computer. Although the Metropolis algorithm

itself cannot be parallelised, we have adapted HERWIG to run on a parallel machine with

the use of MPI code, thereby substantially reducing the run time per point.

4.2.2 Definition of Metropolis quantities for cross-section

We now define the Metropolis algorithm for use with (only) the cross-section data. As

in the previous section, we require the definition of the probability distribution p(p|σobs)

from which samples are to be taken, in which σobs represents the cross-section supposedly

“observed” or measured by the experiment. Lacking real data, we take σobs to be 2.04

pb, the value predicted by a HERWIG and ATLFAST simulatuion of the coannihiliation point

of section 1.2. The evaluation of p(p|σobs) necessitates the definition of a suitable prior

p(p) on the model space P which again we take to be flat (but equal to zero for invalid

values of any of the model parameters pi ∈ p). Finally the Metropolis sampler’s proposal

distribution must be modified to act on the model space P rather than on the mass space

M . The proposal distribution was again chosen to be a multi-dimensional gaussian centred

on the current point p ∈ P . The widths of the proposal distribution in m0, m1/2 and tanβ

were respectively usually 25 GeV, 25 GeV and 2, except when both cross-section and edge

constraints were in use simultaneously (only in sections 4.3 and beyond) in which case a

smaller set of widths was used (5 GeV, 5GeV and 2). The widths were chosen for the
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efficiency reasons outlined in section A.4 and will not affect the results once convergence

has occurred.

The sampled probability distribution p(p|σobs) follows a similar definition to that en-

countered previously for p(m|eobs). The analogue of equation (3.2) is then just the single

term p(σobs|p) quantifying the cross-section likelihood according to:

p(σobs|p) ≈ 1
√

2πσ2
err

exp

(

−(σobs − σpred(p))2

2σ2
err

)

, (4.1)

where σerr is the error associated with the cross-section measurement σobs, and σpred(p) is

the value of the cross-section expected at the point p in mSUGRA parameter space P as

again predicted by a HERWIG and ATLFAST simulation.

The error σerr on the observed cross-section σobs was taken to be ten per cent. This

figure was chosen somewhat arbitrarily, for similar reasons to those given when explaining

the sizes of the errors assumed for the endpoint measurements (see section 2.4): this

paper is designed to illustrate a method, not to claim that a particular measurement can

be made with a certain precision. In contrast, if we had access to real data, it would

be of vital importance to make the estimation of the cross-section error as accurate as

possible. The eventual precision of the final answer will be strongly correlated with the

error attributed to the cross-section. In retrospect, the chosen value of ten per cent probably

underestimates the combination of (1) the statistical error, (2) luminosity error, (3) the

theoretical uncertainty on the signal cross-section, and (4) the combined experimental and

theoretical uncertainty on the prediction for the number of standard model events likely to

pass the signal cuts. If we were to be granted further time on the supercomputer and were

able to start the analysis again from scratch, we would probably re-simulate with a larger

and more realistic error of thirty percent.6 Further work (beyond the scope of this paper)

should be done to investigate the expected size of this error, and to confirm that the effect

of increasing this error estimate is just to enlarge the size of the final regions. Within this

article, however, the cross section error will be taken to be the stated ten per cent — and

this will be sufficient for the purpose of demonstrating how the proposed method can be

used in practice.

Certain regions of mSUGRA parameter space P are known to be unphysical — for

example there may be no electroweak symmetry breaking or there may be a charged LSP.

In both cases, ISAJET will detect this and fail to run. Furthermore there are points p for

which HERWIG will not run. When any of these problems occur we take the point p to be

unphysical and multiply the likelihood by zero (as unphysical points cannot have generated

the observed data!).

6One might hope to estimate what would have happened with a choice of σerr = 30% by reweighting

our exiting “10%” samples. Unfortunatley we find it is only possible to re-weight our existing samples

robustly to reflect values of σerr satisfying σerr ≤ 12%. Attempting to reweight more strongly leads to

a very small number of very strongly reweighted samples dominating the whole reweighted distribution.

There are insufficient statistics in the tails of our existing sampling to allow us to identify the parts of space

that are relevant where a more generous error to have been assumed.
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Figure 8: The region of mSUGRA parameter space consistent with the measurement of the cross-

section of events with missing pT greater than 500GeV, for positive µ.
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Figure 9: The region of mSUGRA parameter space consistent with the measurement of the cross-

section of events with missing pT greater than 500GeV, for negative mu.

4.2.3 Results in mSUGRA space (for cross-section information alone)

The results of the Markov Chain in mass space for positive µ can be seen in figure 8,

with those for negative µ presented in figure 9. The distributions look very similar in

the m0,m1/2 plane, reflecting a lack of sensitivity to the sign of µ. The tanβ distribution

is approximately flat for negative µ, whilst there is some insignificant preference for the

‘correct’ value of tan β = 10 in the positive µ case.

4.2.4 Results in mass space (for cross-section information alone)

We now relate the results in figures 8 and 9 to the weak scale mass space in which we have

already observed the regions consistent with the kinematic edge analysis. The positive µ

and negative µ data sets presented previously have been evolved to the weak scale using

ISAJETand combined into a single data set by weighting each of the two sets by the average

likelihood of that set. The region obtained in mass space is shown in figure 10, and is
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dramatically different from that obtained using the edge analysis. The overlap between

the regions found by the two methods (figures 6 and 10) is shown in figure 11, and was

obtained by multiplying the previous data sets.

The overlap of the two regions has produced much tighter constraints on the particle

masses, even with a relatively conservative estimate of the precision of the endpoint mea-

surements. It is worth noting that the projections of the region of overlap on each pair of

axes give different size regions in each plane, with the smallest being that in the plane of

the neutralino masses. This could be used to remove some of the area shown in the other

planes, although the strictly correct procedure (followed in section 4.3) is to run a Markov

Chain with the edge and cross-section information implemented at the same time.

4.3 Further analysis

The overlap plots presented in the previous subsection give a rough idea of what to expect

from the combination of edge and cross-section information, but the approach is only

approximately valid given that the cross-section measurement is not independent of the

kinematic edge positions. In order to be fully rigorous, one must run a Markov Chain whose

probability density function combines both the cross-section and the edge information at

the same time — in other words one must sample this time from p(p|eobs, σobs).

Accordingly, a Metropolis sampler of p(p|eobs, σobs) was set to explore the mSUGRA

parameter space P .

At each point p ∈ P the number of events passing the missing pT cut was obtained from

the ATLFAST output whilst the ISAJETmass spectrum was used to find the expected position

of the endpoints. This information was then compared to the ‘measured’ information (in

this case, the endpoints shown earlier, and the cross-section obtained through Monte Carlo

simulation of the coannihilation point) in the definition of the probability weight for each

point p ∈ P . The likelihood p(eobs, σobs|p), the analogue of equations (3.2) and (4.1), is

this time the product of the pair of them:

p(eobs, σobs|p) = p(σobs|p)

5
∏

i=1

p(eobs
i |m(p)). (4.2)

The same flat prior p(p) on mSUGRA space P was used as in section 4.2.2. The

likelihood was multiplied by zero if the sparticle masses m(p) obtained at a point p were

not consistent with the mass hierarchy required for the squark decay chain to exist. The

Metropolis algorithm’s proposal distribution was the same as that used previously in sec-

tion 4.2.2. Chains were run separately for positive and negative µ.

4.3.1 Results for cross-section and edge measurements together

The mSUGRA space results for cross-section and edge measurements are shown in fig-

ures 12 and 13, with the results in mass space shown in figure 14. Note that inclusion of

the cross-section information greatly improves the precision in the m0,m1/2 plane.

We would like to emphasise at this stage that the majority of the apparent improvement

is not the result of the inclusion of the cross-section measurement — but is rather a well
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Figure 10: The region of mass space consistent with a measurement at 10% precision of the cross-

section of events with missing pT greater than 500GeV, obtained using a Markov chain sampler.

known side-effect of the fit taking place in a model space which is more tightly constrained

(masses depend primarily on just the two parameters m0 and m1/2) than the original

mass space (four free masses). Many points in mSUGRA space are now rejected as they
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Figure 11: The region of mass space consistent with a measurement at 10% precision of the cross-

section of events with missing pT greater than 500GeV, overlapped with a measurement of the

squark decay kinematic endpoints obtained in section 2.

give the wrong mass hierarchy for the decay chain. This leads to a jump in mass-space

precision, at the expense of incorporating some model dependence. If we are prepared to

accept the model dependence introduced by moving to the space of a particular model

(in this case mSUGRA) we are forced to accept “uncomfortably” tight constraints on the
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Figure 12: The region of mSUGRA parameter space consistent with the measurement of the

cross-section of events with missing pT greater than 500GeV and with the endpoint measurements

obtained in section 2, for positive µ.
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Figure 13: The region of mSUGRA parameter space consistent with the measurement of the

cross-section of events with missing pT greater than 500GeV and with the endpoint measurements

obtained in section 2, for negative µ.

compatible regions of parameter space. Why uncomfortable? Uncomfortable because the

choice of mSUGRA was somewhat arbitrary, and made without a strong degree of belief

that mSUGRA is an effective theory of Nature. Given this lack of confidence in mSUGRA

itself, there seems little use in being able to quote tiny errors on the parts of it which are

compatible with the data — especially when even small departures from the mSUGRA

model might lead to significant changes in the sparticle spectra or properties.

However, this very distaste is now the motivation for recognising that we are no longer

restricted to looking at overly constrained models like mSUGRA, and suggests that we can

now look at a wider class of models in which we hope to have a higher degree of faith. In

this way we can lose some of the unpleasant model dependence just introduced, and can for

the first time actually put the cross-section measurement in a position in which it can play
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an active role in constraining competing theories. We thus hope to illustrate the power of

our technique.

In section 5 we go on to increase the dimensionality of the parameter space in exactly

this way (by relaxing the conditions that impose, for example, universal gaugino masses at

the GUT scale, etc) and still maintain good precision by using the endpoint data together

with the cross-section measurement. Inclusive and exclusive data is combined to explore

more general SUSY models in order to learn yet more about the SUSY lagrangian.

Finally, it is crucial to note that there is another limitation in the analysis so far in that

it has been assumed that one has established that the particles involved in the decay chain

are the two lightest neutralinos and the left-handed slepton. In practise, one could just as

easily fit endpoints using, for example, the heaviest two neutralinos and the right-handed

slepton. This ambiguity ought to be reflected in the analysis, and has only rarely been

considered before (see for example [7, 8]). This is also considered in section 5.

5. Going beyond mSUGRA

We have seen thus far that one can sample from the mSUGRA parameter space using

both kinematic endpoint data and a simple cross-section measurement. Endpoint data

alone gives more than adequate precision within the framework of mSUGRA, provided one

samples the mSUGRA parameter space and assumes that one has identified the particles

in the decay chain correctly. The aim of this section is to generalise this analysis to include

both ambiguity in the decay chain and more general assumptions about the mechanism of

SUSY breaking. We will also consider the effect of the jet energy scale error on the endpoint

positions, thus demonstrating how one would include correlated experimental effects in our

analysis.

5.1 Effect of a jet energy scale error

Any detector such as ATLAS does not measure the energy of jets perfectly, but instead has

some energy scale error. Given that most of the endpoints feature a quark jet, it is worth

investigating the effect of the energy scale error on the positions of the endpoints, and the

subsequent effect on our precision in the mSUGRA parameter space.

Firstly, it is noted that for jets whose energy exceeds 70 GeV (the likely energy of the

jet in our endpoints given the relatively large mass difference between the squarks and the

neutralinos), the energy scale error is expected to be of the order of 1 per cent [9]. This

is much lower than the errors we have already attributed to the endpoints that arise from

mismeasurement, and hence the effect will not cause a discernible difference to our results.

We have nevertheless included the effect in our analysis as an example of how one can

incorporate experimental effects in our analysis.

To accommodate the effect of an unknown shift s in the absolute jet energy scale,

we add s to the parameter set explored by the sampler. In other words, the sampler now

wanders around the extended space Q = P ⊗ S defined as the product of the mSUGRA

parameter space P = {p} with the set S of possible values of s. At each point q = (p, s) ∈
Q we work out the masses m(p) of the particles in the decay chain. We then calculate
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Figure 14: The region of mass space consistent with a measurement at 10% precision of the cross-

section of events with missing pT greater than 500GeV combined with the endpoints measured in

section 2, obtained using a Markov chain sampler in mSUGRA space.

the “idealised” positions of the edges corresponding to these masses (as before) but we

then move the positions of these edges by the amount predicted by the current hypothesis

s for the the absolute jet energy scale correction. The resulting modified edge positions
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Figure 15: The region of mSUGRA parameter space consistent with the endpoint measurements

obtained in section 2, for positive µ, with a 1 per cent jet energy scale error included.

epred = epred(q) = epred(m(p), s), which now depend on s, are the values which are used

in the new version of equation (3.3).

Having extended P to the larger space Q, our goal is now to sample not from p(p|eobs)

but from p(q|eobs). The latter is proportional to p(eobs|q)p(q). The first term p(eobs|q)

may be calculated almost exactly as before in equation (3.3) but with the new modified

edge positions epred(m(p), s) described above. The last term p(q) may be decomposed by

independence into two parts: p(p)p(s). The first of these, p(p), is the mSUGRA-space

prior which we have seen before,7 while the other, p(s), is the expected distribution of

the final uncertainty in the absolute jet energy scale. Following [9] we take p(s) to be a

gaussian of width 1%.

In order to determine the particular amounts δi by which the ith endpoint should be

shifted for a given jet energy scale correction factor s, we run a toy Monte Carlo simulation

at that point and for that edge.8 This is done once with and once without the correction

factor s multiplying the jet energies. The positions of the endpoints are compared in the

two cases. Different endpoints are thus shifted by different fractions of the energy scale

error s.

The results including uncertainty in the jet energy scale are shown in figures 15 and 16

for positive and negative µ respectively and are comparable to those obtained previously

(figures 12 and 13) when uncertainty in the jet energy scale was not considered.

5.2 Chain ambiguity in mSUGRA

In order to investigate the effect of chain ambiguity on the mSUGRA parameter space, the

edge data from section 2 are here used in an mSUGRA fit without the assumption that

the particles in the decay chain have been identified correctly. It is still true that there are

few processes that can give the characteristic endpoints associated with the squark cascade

decay already described, and it should be sufficient merely to include the possibility that

any of the neutralinos may be produced in the decay (provided of course that the one

further down the chain is lighter than that above it) and that one has ambiguity over the

7We must remember that, as in earlier sections, the likelihood p(eobs|q) will be zero (given our model)

at points where the masses of the particles in the chain do not obey the necessary mass hierarchy. It was

computationally easier for us to place this veto into the prior p(p) as before.
8Strictly speaking the toy Monte Carlo simulation is only needed for the llq edge and the llq threshold

as the shifts in the edge positions for the other edges are linear in
√

s and may be calculated analytically.– 23 –
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Figure 16: The region of mSUGRA parameter space consistent with the endpoint measurements

obtained in section 2, for negative µ, with a 1 per cent jet energy scale error included.

slepton chirality. This gives twelve possible mass hierarchies (see table 4) and each of these

gives a series of possible endpoints in the mass spectra. The issue of how to deal with

parts of parameter space able to generate the same final state through three- rather than

two-body decays (for example when the sleptons are too massive to produce directly) is

beyond the scope of this document but is ideal for further study.

There can easily be points in pa-
Name Hieracrchy

H1 mq̃ > mχ̃0
2

> mẽL
> mχ̃0

1

H2 mq̃ > mχ̃0
3

> mẽL
> mχ̃0

1

H3 mq̃ > mχ̃0
3

> mẽL
> mχ̃0

2

H4 mq̃ > mχ̃0
4

> mẽL
> mχ̃0

1

H5 mq̃ > mχ̃0
4

> mẽL
> mχ̃0

2

H6 mq̃ > mχ̃0
4

> mẽL
> mχ̃0

3

H7 mq̃ > mχ̃0
2

> mẽR
> mχ̃0

1

H8 mq̃ > mχ̃0
3

> mẽR
> mχ̃0

1

H9 mq̃ > mχ̃0
3

> mẽR
> mχ̃0

2

H10 mq̃ > mχ̃0
4

> mẽR
> mχ̃0

1

H11 mq̃ > mχ̃0

4

> mẽR
> mχ̃0

2

H12 mq̃ > mχ̃0
4

> mẽR
> mχ̃0

3

Table 4: The twelve mass hierarchies considered in

section 5.2.

rameter space at which almost all spar-

ticle production goes through one par-

ticular hierarchy (say H1), but in which

a different hierarchy (say H2) has end-

point locations which are a much bet-

ter fit to the positions of the “ob-

served” edges. This could be true even

if the cross section for H2 was much

less than for H1. Events from H2

might not even be observable. It is

very costly to accurately determine

the observability (after realistic de-

tector cuts and consideration of back-

grounds) of each of the hierarchies in

table 4 at every point in parameter

space visited by the Markov Chain.

For this reason, in this article we adopt the following conservative position. We choose

not to consider the (un)observability of end points at different points in parameter space.

Instead we assume that every hierarchy consistent with the masses of a given point is po-

tentially visible. This assumption is conservative because in reality only a few hierarchies

will be visible. The consequence of our assumption is that we will not reject points of pa-
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rameter space that a more in-depth analysis might be able to reject. It would be interesting

for further work to pursue the possibility of making stronger statements at each point in

parameter space based not only on the positions of the observed edges, but also based on

the number of event in them, and the number of events in distributions which were not

observed to have edges etc. How to cope with points at which heavy sleptons force three-

rather than two-body neutralino decays should also be investigated. In depth analyses of

this kind are beyond the scope of this paper, however.

If we label the Na different mass assignments with a tag ai, the likelihood for the i-th

observed edge at each point p in the mSUGRA parameter space P now becomes:

p(eobs
i |p) =

Na
∑

j=1

p(eobs
i |p, aj)p(aj)

=

Na
∑

j=1

p(eobs
i |maj

(p))p(aj) (5.1)

where p(ai) is the prior for the mass assignments, and Na gives the number of assignments

open at that point in parameter space. If we assume that each of the assignments is

equally likely, the prior p(ai) is simply 1/Na. The term p(eobs
i |mai

(p)) is calculated using

equation (3.3) with the masses corresponding to the assignment ai.

Equation (5.1) makes the conservative assumption that any observed edge could have

come from any observed chain (i.e. not necessarily from the same chain as that generating

a different observed edge). Furthermore (but less realistically) it assumes that there is

no correlation between the chains generating each of the edges, whereas in many parts

of parameter space it is highly likely that there is only one dominant chain. It is thus

arguable that equation (5.1) should be replaced by the stronger statement

p(eobs|p) =
Na
∑

j=1

p(eobs|p, aj)p(aj)

=

Na
∑

j=1

p(eobs|maj
(p))p(aj) (5.2)

which says that all the observed edges were the result of the same (albeit unknown and

unidentified) chain of sparticles. We choose to present results using (5.1) rather than (5.2).

The results for positive µ are seen in figure 17, whilst those for negative µ are in

figure 18. The precision is worse than that encountered previously, but not by much. It

may be seen that there are two favoured regions in each plot, rather than the single region

encountered previously. The region at larger m0 is one in which hierarchy H1 dominates

the sum (5.1). The lower m0 region has (5.1) dominated by hierarchy H7 in which the

right-slepton is substituted for the left-slepton.

The next course of action is to view the regions in the weak scale mass space that

correspond to the chosen mSUGRA points, and here we have a problem. Since we are now

assuming that we do not know exactly which particles are in the decay chain, we can no

– 25 –
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Figure 17: The region of mSUGRA parameter space consistent with the endpoint measurements

of section 2, without the assumption that the neutralinos and slepton in the squark decay chain

have been correctly identified. For full details, see text. Results are shown for positive µ.
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Figure 18: The region of mSUGRA parameter space consistent with the endpoint measurements

of section 2, without the assumption that the neutralinos and slepton in the squark decay chain

have been correctly identified. For full details, see text. Results are shown for negative µ.

longer take the points in the mSUGRA plane and claim that they give us the masses of the

lightest two neutralinos and the left handed slepton. Instead, we can merely say that we

have measured a neutralino-like object and a slepton-like object, but that we need some

more facts before we can say anything more.

We can, however, use some other information to tell us more about the particles in

the decay chain. For a start, we can look at the width of the distribution for each mass

(neutralino 1, neutralino 2, etc) that results from the mSUGRA points and use these widths

as a qualitative guide. If the endpoints are really caused by a single mass hierarchy, the

masses in this chain should generally fit the data better than other hierarchies, and this

will manifest itself in a smaller spread of masses for the masses involved in the correct

hierarchy. In our case, the endpoints should all be caused by a decay chain featuring the
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lightest two neutralinos and the left handed slepton, so we expect these masses to have

narrower distributions. This is indeed the case for the neutralinos, as seen in figure 19,

though the selectron results are less different.

Note that figure 19 does not yet show mass measurements. The plots could only be

interpreted as mass measurements if further work were able to establish the identities of

the particles involved and confirm that they came predominantly from just one chain. Here

we show them only to help get a hold on which decay chains appear to be consistent with

the results.

There are other things that can be done. Having had our attention drawn to a small

region of the mSUGRA parameter space, we can look within that region at the branching

ratios for the different possible mass hierarchies, after which we might find that there are

not enough events of a given type to be consistent with the observed endpoints. Therefore,

although a decay chain featuring a neutralino 3 and neutralino 2 may fit a given endpoint

slightly better than the correct chain, it might be impossible for that chain to produce an

endpoint with the same number of events present as has been observed. This, in conjunction

with the width of the mass distributions, might be enough to confirm the nature of the

true decay chain, but it would be foolish to assume that the true chain will always be easy

to identify.

Given that the region in mSUGRA space has not substantially increased in size, we

will not add the cross-section information at this stage. Instead, we will investigate the

effect of relaxing some of the assumptions of the mSUGRA model.

5.3 A non-universal SUGRA model

The mSUGRA model assumes universality of the scalar and gaugino masses at the GUT

scale, and also unifies the trilinear couplings at the GUT scale. Although this helps in

reducing the SUSY breaking parameter set to a manageable level, reality may present a

more complicated case. Hence, there is a very strong motivation for developing techniques

that are either model independent or are at least able to tackle some more general SUSY

models.

In this subsection, we investigate the effect of relaxing the assumption of universal

GUT scale gaugino masses, whilst still retaining the chain ambiguity and jet energy scale

effects encountered in the sections 5.1 and 5.2. It is important to realise that this is merely

a first example of the use of the techniques developed here; one could just as easily relax

more of the mSUGRA assumptions provided that one has made enough measurements to

provide suitable constraints on the resulting model.

5.3.1 Kinematic edge constraints on non-universal SUGRA

The parameter set for the SUGRA model now becomes m0, tanβ, A0, sgn(µ), M1, M2

and M3. A Metropolis sampler was used to sample from this parameter space (along with

the jet energy scale error s), with the mass spectrum of each point found using ISAJET

7.69. Chain ambiguity was incorporated in the same way as described in section 5.2. The

results are seen in figures 20 and 21: it should be noted that the previous m0 vs m1/2 plot

has been superseded by three plots against the various GUT scale gaugino masses. The
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Figure 19: The mass distributions obtained from the mSUGRA chain, in which one has not

assumed that the particles in the decay chain have been identified. These are not to be confused

with mass measurements! The width of each plot (RMS about the mean) is recorded for each plot

in GeV.

plots shown contain 800,000 points, after which the sampler was still clearly exploring new

areas of the parameter space. In these plots, the Markov Chain has not yet converged, and
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Figure 20: The region of our non-universal SUGRA parameter space consistent with the endpoint

measurements of section 2, with chain ambiguity included. Results are shown for positive µ.

this lack of convergence is sufficient to show that the endpoint data alone do not provide

sufficient information to adequately constrain the non-universal SUGRA model, and so we

have indeed reached a point where we need to consider additional measurements — such

as the cross-section.

5.3.2 Kinematic edge data and cross-section constraints on non-universal

SUGRA

A further Metropolis sampler was used to explore the parameter space of our non-universal

SUGRA model using both the cross-section information and the edge data in the definition

of the probability weight for each point. The results for positive µ are seen in figure 22,

whilst those for negative µ are seen in figure 23, and the difference from the plots described

above is immediately apparent. The system is much more tightly constrained, and it has

not wandered too far from the region corresponding to an mSUGRA model in which M1,
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Figure 21: The region of our non-universal SUGRA parameter space consistent with the endpoint

measurements of section 2, with chain ambiguity included. Results are shown for negative µ.

M2 and M3 are degenerate. One can convert this GUT scale region to a region in mass

space as before (see figure 24), though with the previous disclaimer that we have not yet

identified which of the particles are involved in the decay chain but merely the range on the

various masses that might be involved. Further work in the form of Monte Carlo studies

targeted in the selected region at the GUT scale might possibly identify which masses are

involved and hence improve the precision further, a study that is perfectly feasible given

the relatively small extent of the region allowed by our data.

The results presented here are very encouraging, however, showing that even with

only one extra observable we can afford to be more honest about our lack of information

regarding decay processes whilst still obtaining adequate precision within the framework

of mSUGRA, and reasonable precision in a more general model.

– 30 –



J
H
E
P
0
1
(
2
0
0
6
)
0
8
0

0 100 200 300 400 500 600 700 800 90010000

500

1000

1500

2000

2500

 (GeV)0m

 (
G

eV
)

3
M

0 20 40 60 80 100 120 140200

250

300

350

400

450

500

 (GeV)0m

 (
G

eV
)

3
M

0 10 20 30 40 50 60 70 80 90 1000

500

1000

1500

2000

2500

3000

3500

βtan

N
u

m
b

er
 o

f 
p

o
in

ts

0 100 200 300 400 500 600 700 800 90010000

500

1000

1500

2000

2500

 (GeV)0m

 (
G

eV
)

1
M

0 20 40 60 80 100 120 140200

250

300

350

400

450

500

 (GeV)0m

 (
G

eV
)

1
M

0 100 200 300 400 500 600 700 800 90010000

500

1000

1500

2000

2500

 (GeV)0m

 (
G

eV
)

2
M

0 20 40 60 80 100 120 140200

250

300

350

400

450

500

 (GeV)0m

 (
G

eV
)

2
M

Figure 22: The region of our non-universal SUGRA parameter space consistent with the endpoint

measurements of section 2 and the cross-section measurement, with chain ambiguity included.

Results are shown for positive µ.

6. Conclusions

We have used Markov Chain sampling techniques to combine kinematic endpoint mea-

surements with a cross-section measurement in order to obtain precision SUSY mass mea-

surements in simulated ATLAS data. Previous analyses have been extended to include

ambiguity in the decay chain responsible for the endpoints, and a preliminary study has

been made of a non-universal SUGRA model. Throughout it has been shown that the pre-

cision of mass measurements is greatly improved through the use of inclusive data, and the

technique described offers a rigorous and general approach to the problem of constraining

SUSY at the LHC. Reasonable precision has been obtained even with a fairly conservative

estimate of the errors on the endpoints themselves.

The work described here is the first step toward what is hoped will be a powerful
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Figure 23: The region of our non-universal SUGRA parameter space consistent with the endpoint

measurements of section 2 and the cross-section measurement, with chain ambiguity included.

Results are shown for negative µ.

technique for future analysis. By collecting inclusive observables, one can start to look

at more and more general models, with the final result limited only by the ability of

physicists to come up with new pieces of information. At the very least, the Markov

Chain approach is a powerful framework for combining information and exploring multi-

dimensional parameter spaces in an efficient manner.

As a final note, it is worth remarking that the technique is not limited solely to data

obtained at the LHC. Any piece of relevant data is potentially useful, with obvious examples

being cross-section limits for rare decay processes, and dark matter measurements that are

currently already being used to set limits on theories (see, for example, [14, 15] and [16]).

As we start to explore models with greater numbers of parameters, this extra knowledge

could prove invaluable in providing a sufficient number of constraints, and this will be the

subject of future papers.
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Figure 24: The region of mass space corresponding to the non-universal SUGRA parameter space

region obtained in the text.
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A. Markov chain sampling

There follows a brief review of the relevant techniques involved in the Markov chain methods

used in our analysis. For a more comprehensive explanation, see [17]).

A.1 Markov chains

Let Xi be a (possibly infinite) discrete sequence of random variables. X1,X2, . . . is said to

have the Markov property if:

P (Xi+1 = xi+1|Xi = xi,Xi−1 = xi−1, . . . ,X1 = x1) = P (Xi+1 = xi+1|Xi = xi) (A.1)

for every sequence x1, . . . , xi, xi+1 and for every i ≥ 1. A sequence of random variables

with the Markov property is called a Markov chain.

Suppose i is a discrete step in a time variable. The Markov property is then equivalent

to stating that, given a present element of the sequence Xi, the conditional probability of

the next element in the sequence is dependent only on the present. Thus, at each time i

the future of the process is conditionally independent of the past given the present.

A.2 Sampling and probability distributions

Suppose we wish to determine a probability distribution P (x); for example, the posterior

probability of a model’s parameters given some data. It is assumed in general that x is

an N -dimensional vector and that P (x) can be evaluated only to within a normalisation

constant Z; i.e. we can evaluate the function P ∗(x) where:

P (x) =
P ∗(x)

Z
(A.2)

Although P (x) cannot be obtained analytically, we can in theory solve the problem by

sampling from P (x) and plotting the results. Two immediate problems present themselves;

the first is that Z is in general unknown. The second, which holds true even if we know Z,

is that it is not obvious how to sample from P (x) efficiently without visiting every position

x. We would like a way to visit places in x-space where P (x) is large in preference to

places where P (x) is small, thus giving a description of the probability distribution with a

minimum of computational effort.

A.3 The Metropolis-Hastings algorithm

The above problem can be solved through the use of Markov Chain Monte Carlo methods,

one example of which is the Metropolis-Hastings algorithm. This makes use of a proposal
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density Q which depends on the current state of a system, which we label x(t). (This

state is really a point in a Markov Chain, and may be, for example, a particular choice

of the parameters in the model whose probability distribution we are trying to sample).

The density Q(x′;x(t)) (where x′ is a tentative new state, or the next point in the Markov

chain) can be any fixed density from which it is possible to draw samples; it is not necessary

for Q(x′;x(t)) to resemble P (x) for the algorithm to be useful, and it is common to choose

a simple distribution such as a gaussian with a width chosen for the reasons outlined in

section A.4.

Assuming that it is possible to evaluate P ∗(x) for any x as above, the first step in

the Metropolis-Hastings algorithm is to generate a new state x′ from the proposal density

Q(x′;x(t)). The decision on whether to accept the new state is made by computing the

quantity:

a =
P ∗(x′)Q(x(t);x′)

P ∗(x(t))Q(x′;x(t))
(A.3)

Equation (A.3) exists to ensure that the sampled distribution does not depend on the

choice of Q.

If a ≥ 1 the new state is accepted, otherwise the new state is accepted with probability

a. It is noted that if Q is a simple symmetric density, the ratio of the Q functions in

equation (A.3) is unity, in which case the Metropolis-Hastings algorithm reduces to the

Metropolis method, involving a simple comparison of the target density at the two points

in the Markov Chain.

If Q is chosen such that Q(x′;x) > 0 for all x,x′, the probability distribution of x(t)

tends to P (x) = P ∗(x)/Z as t → ∞. Thus, by choosing points via the Metropolis algorithm

and then plotting them, we have achieved our goal of obtaining a description of P (x) in

an efficient manner.

A.4 Efficiency of the Metropolis-Hastings algorithm

Note that the presence of the caveat t → ∞ implies that there is an issue of convergence

in the application of the Metropolis-Hastings algorithm. Each element in the sequence x(t)

has a probability distribution that is dependent on the previous value x(t−1) and hence,

since successive samples are correlated with each other, the Markov Chain must be run for

a certain length of time in order to generate samples that are effectively independent — at

which point we say the chain has “converged”. The time it takes for the chain to converge

depends on the particular P (x) being sampled, and on the details of Q. You cannot modify

P (x), but you are free to choose the form of Q so as to reduce the number of points which

must be sampled before convergence is reached. Remember that equation (A.3) exists to

ensure that the sampled distribution does not depend on your choice of Q.

Finding a sensible Q is a balance between choosing distributions that are wide (and

thus lead to successive samples being relatively un-correlated) and choosing distributions

which are too wide (and which then take a long time to random walk from one end of the

sample space to the other). The widths of the proposal functions Q used in this paper were

chosen to be as large as possible, subject to the Markov Chain’s efficiency (the fraction

of proposal points being accepted) not falling much below one in twenty. This choice
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only affects the sampler’s time to convergence and not the shape of the resultant sampled

distributions once convergence has been reached.

B. Convergence of Markov chains

It is a good idea to check on the convergence of processes involving Markov chains. Results

(e.g. means of quantities evaluated under the posterior distribution) could be very wrong

if the markov chain has not yet fully explored the bulk of the parameter space. Even if

all the important parts of the space have been explored, numerical results could still be

adversely affected by poor equilibriation between distant parts of the distribution.

There is no 100% reliable way of assessing whether a Markov Chain has fully con-

verged — for example there is always the possibility of there being an isolated or almost

isolated region of very large probability which has not (yet) been found by the chain. This

might happen if there were a large “barrier of poor probability” separating the explored

from the unexplored regions. We cation readers therefore to take quantitative convergence

measures (such as those given below) with a pinch of salt — they provide a guide to the

convergence properties of the chain in question, but by themselves they do not tell you

all you might wish to know. In the opinion of the authors, experience gained from using

Markov Chain samplers combined with knowledge of the sorts of regions that the chain

ought to be exploring (given the physical constraints of the problem) often provides a much

clearer estimate of whether a chain has converged than many statistical tests provide by

themselves.

In spite of the above caution, convergence measures are nonetheless informative. We

have chosen to illustrate the convergence properties of the chain in this paper (for the

mSUGRA data presented in section 4) using the relatively simple technique of observing

the variation with time of the mean of the parameters which we are interested in.

Figures 8 and 9 display the region of mSUGRA parameter space consistent with the

cross-section of events with missing pT greater than 500 GeV. Three parameters were varied

in the study (m0, m1/2 and tanβ), and the mean of each of these parameters can be plotted

against ‘time’9. Convergence can be said to occur when the mean tends towards a constant

value, though one has to assume that there is no hidden region of high probability that the

sampler failed to find.

Results are shown in figures 25, 26 and 27. The sampler was started at a point far from

the true point, and in each case one can observe a rapid move towards a region of higher

probability, followed by a gradual convergence to at or better than the 10% level. The final

mean value need not correspond to the value in the straw model; in the case of positive

µ this is because the endpoints are mismeasured whilst in the negative µ case there is in

fact no correct mean parameter value as the model being investigated has positive µ. The

same method was used to assess the convergence of all other data sets in the main body

of the text.

It is noted that the case for the convergence of tanβ is less compelling than that for

the other parameters, and it is suggested that this is a reflection of the fact that the

9the time variable actually labels successive points in the Markov Chain.
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Figure 25: The variation of the mean m0 value with time for the mSUGRA data presented in

figures 8 and 9. Positive µ data is shown on the left, whilst negative µ data is on the right.
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Figure 26: The variation of the mean m1/2 value with time for the mSUGRA data presented in

figures 8 and 9. Positive µ data is shown on the left, whilst negative µ data is on the right.

constraints used in the analysis have little dependence on tanβ. A flat distribution in tanβ

should ultimately arise from the sampling, and it takes a relatively long time to establish

given the poor level of constraint. Essentially, this illustrates that a knowledge of the

underlying physics is often as useful as quantitative tests in establishing the behaviour of

a system near convergence.

Later on, when one has access to real LHC data and wishes to make statements about

constants of nature, it will be much more important to test convergence rigorously, for

example using methods like those in [16] based on [18].
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